Invented 30 years ago, the atomic force microscope has been a major driver of nanotechnology, ranging from atomic-scale imaging to its latest applications in manipulating individual molecules, ...
Atomic force microscopy (AFM) has evolved into an indispensable tool for nanoscale imaging and fabrication, enabling both high-resolution surface characterisation and precise nanomachining. By ...
Atomic Force Microscopy (AFM) has evolved into a central technique in nanotechnology, providing three-dimensional imaging and precise measurements at the atomic scale. Its ability to probe surfaces by ...
Anyone who has ever taken the time to critically examine a walnut knows that a two-dimensional photograph fails in many respects to truly convey the unique features--the nicks, crannies, valleys, and ...
Atomic force microscopy (AFM) is a way to investigate the surface features of some materials. It works by “feeling” or “touching” the surface with an extremely small probe. This provides a ...
Christoph Gerber, who co-invented the atomic force microscope, tells Matthew Chalmers how the AFM came about 30 years ago and why it continues to shape research at the nanoscale Nano-vision Christoph ...
“We already have a number of Bruker AFMs in our open-access user facilities and are always looking for new technology that can further support the many researchers we serve from both academia and ...
The developed high-speed three-dimensional scanning force microscopy enabled the measurement of 3D force distribution at solid-liquid interfaces at 1.6 s/3D image. With this technique, 3D hydration ...
First invented in 1985 by IBM in Zurich, Atomic Force Microscopy (AFM) is a scanning probe technique for imaging. It involves a nanoscopic tip attached to a microscopic, flexible cantilever, which is ...
The Park FX40 Automatic Atomic Force Microscope (AFM) System is capable of high spatial resolution surface mapping and is equipped with a True Non-Contact TM mode capable of nanoscale surface analysis ...
Polymer materials play an increasingly important role in a variety of industrial applications, thanks to their distinct physical and chemical properties. Among their key mechanical characteristics, ...